
Graphs and Flows

Paths and Cycles
Flow and Divergence
Path Flows and Conformal Decomposition
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Graphs: Introduction
• Graph G=(N,A), N set of nodes, A set of pairs of 

distinct nodes from N called arcs.
• N={n1, n2,..., n8}
• A={(n1, n2), (n1, n3), (n3, n4), (n4, n5), (n5, n6), 

(n6, n8), (n6, n7), (n7, n8), (n3, n7) , (n2, n8) ,
(n2, n5)}
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Directed Graph
• Graph G=(N,A), N set of nodes, A set of pairs of 

distinct nodes from N called arcs.
• N={n1, n2,..., n8}
• A={(n1, n2), (n1, n3), (n3, n4), (n4, n5), (n6, n5), 

(n6, n8), (n6, n7), (n7, n8), (n3, n7) , (n7, n3) ,
(n8, n2), (n5, n2), (n2, n1)}
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Directed graphs: A terminology note

• Arc (i,j) “outgoing from node i”, “incoming 
to node j ”; (i,j) “incident to i and j ”, i the 
“start node”, j the “end node”.

• Directed graphs to be used throughout this 
chapter.

i j
(i,j)
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Paths
• Path: A sequence of nodes and a corresponding 

sequence of arcs, forward or backward.
• n1 “start node”, n6 “end node”.
• In path P, P+ is the set of forward arcs, 

P- is the set of backward arcs.
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Paths
• Forward (backward) path: All arcs are forward 

(backward).
• Simple path: It contains no repeated arcs and no 

repeated nodes (except the start and the end node 
could be the same, then it is a simple cycle).
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Paths
• Cycle: Path s.t. start node = end node.
• Simple cycle: Cycle without repeated arcs or nodes.
• Hamiltonian cycle: A simple forward cycle that contains 

all the nodes of a the graph.
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Acyclic graph

• Contains no cycles.
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Connected graph, tree
• Connected graph: There is a path between any pair of 

nodes.
• A tree is a connected acyclic graph.
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Eulerian Graphs

A

D
B

C

A

B

C

D

Koenigsberg bridge problem Equivalent graph
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• If a graph is connected and each of its nodes has even 
degree, there is a cycle (not necessarily forward) that 
contains all the arcs of the cycle exactly once.
• Such a cycle is called an Euler cycle.
• Is the Koenigsberg bridge problem solvable?



Subgraph

• Subgraph G’ = (N’, A’) of graph G = (N, A): 
N’⊆ N and A’ ⊆ A.
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Spanning tree
• Spanning tree of G is a subgraph of G, which is a 

tree and contains all the nodes of G.
• Lemma: A subgraph is a spanning tree iff

it is connected and contains N-1 arcs.
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Flow
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• Flow of arc (i,j): 
A scalar xij (real, can be negative).

• Given a graph (N,A), a set of flows 

is referred to as a flow vector.
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Flow and divergence
• Divergence (of i): Given a flow vector x and a 

graph G
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iy• Consequence of flow definition:
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Source/sink
• Node i is a source (sink) for flow x if yi > 0 (<0).
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Circulation
• If yi=0 for all i in N, flow x is called a circulation.
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Path P unblocked w.r.t. flow vector x
• Assume that for each arc there is an upper 

bound cij to its flow xij, and a lower bound bij.
• If bij<xij<cij , given a flow vector x, a path P is 

unblocked w.r.t. x iff additional positive flow 
can be sent along P without violating the 
constraints, i.e. flow can be increased 
(decreased) on P+ (P-) of the forward 
(backward) arcs: +∈∀< Pjicx ijij ),(

−∈∀> Pjibx ijij ),(
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Example

• Assuming that in this network cij=5 and bij=-5 for 
all arcs, is the path from A to B blocked?
• What is the maximum additional (positive) flow we 
can send from A to B? 
• Same question from B to A.

2 3 -1 4A B
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Path flows
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• A simple path flow
sends a positive 
amount of flow along 
a simple path P: ⎪
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• If P is a cycle, x is called a simple cycle flow.
• P conforms to x if xij>0 for all forward arcs (i,j) of P 
and xij<0 for all backward arcs (i,j) of P
and furthermore P is a cycle or else the start node of P
is a source and the end node of P is a sink.



Example
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Does the path consisting of the sequence of arcs
(n1,n3), (n3,n4), (n4,n5), (n5,n6)

conform to the flow vector shown?

No, because n1 is not a source.



Simple path flow 
conforms to vector flow

• A simple path flow xs conforms to flow vector x 
if the path P corresponding to xs via [eq. in slide 
20] conforms to x.

• This is equivalent to

0:),(0

0:),(0

<∀<

<∀<
s
ijij

s
ijij

xjix

xjix

22



Conformal realization theorem

A nonzero flow vector x can be decomposed 
into the sum of t simple path flow vectors 
x1, x2,…, xt that conforms to x, with t being 
at most equal to the sum of the numbers of 
arcs and nodes A+N. If x is integer, then x1, 
x2,…, xt can also be chosen to be integer. If 
x is a circulation, then x1, x2,…, xt can be 
chosen to be simple cycle flows, and t ≤ A.
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Example
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Decompose the vector flow x into simple path flows.
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Example (continued)

Step 1: Find 
sources and 
sinks.
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Step 2: Find simple 
path flows from 
sources to sinks or 
simple cycle flows
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